戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 eractions of B. mallei, Yersinia pestis, and Salmonella enterica.
2 for virulence in Yersinia enterocolitica and Salmonella enterica.
3 sponsible for eptA regulation in E. coli and Salmonella enterica.
4 ilament among B. subtilis, P. aeruginosa and Salmonella enterica.
5 s transfer of pSLT, the virulence plasmid of Salmonella enterica.
6 edate the split between Escherichia coli and Salmonella enterica.
7 r Gram-negative species Escherichia coli and Salmonella enterica.
8 egion of the Mg(2+) transporter gene mgtA in Salmonella enterica.
9 ram-negatives including Escherichia coli and Salmonella enterica.
10 orming pathogens: Pseudomonas aeruginosa and Salmonella enterica.
11 Listeria monocytogenes, Escherichia coli and Salmonella enterica.
12 xal 5'-phosphate (PLP)-containing enzymes in Salmonella enterica.
13 of the essential endoribonuclease RNase E in Salmonella enterica.
14 m impacted by the metabolic stress of 2AA in Salmonella enterica.
15 nt-invasive E. coli and the related pathogen Salmonella enterica.
16 ltry to infections with distinct serovars of Salmonella enterica.
17 ntibiotic resistance-conferring mutations in Salmonella enterica and E. coli.
18    Here, we reveal the crystal structures of Salmonella enterica and Escherichia coli LpoB.
19 s of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementi
20     The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c-di-
21   Several intracellular pathogens, including Salmonella enterica and Mycobacterium tuberculosis, requ
22 acteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis.
23  burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typh
24                Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us
25 -propanediol utilization microcompartment of Salmonella enterica and use it to analyze the function o
26 eases caused by pathogenic Escherichia coli, Salmonella enterica, and Clostridium difficile.
27 s, Campylobacter fetus, Helicobacter pylori, Salmonella enterica, and Giardia lamblia were detected i
28 foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless
29                                   Strains of Salmonella enterica, and other organisms lacking RidA, h
30 eria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected w
31 ying host range distribution in a lineage of Salmonella enterica, and we discuss many other potential
32                                              Salmonella enterica are invasive intracellular pathogens
33                         Escherichia coli and Salmonella enterica are models for many experiments in m
34 s have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli
35 at viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected c
36 ine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to st
37 -propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategi
38     Collectively, our findings indicate that Salmonella enterica can promote transformation of geneti
39                                              Salmonella enterica catabolizes ethanolamine inside a co
40                                  Serovars of Salmonella enterica cause both gastrointestinal and syst
41                                              Salmonella enterica causes systemic diseases (typhoid an
42                      In Escherichia coli and Salmonella enterica, Crl positively regulates the sigma(
43                                    SpvD is a Salmonella enterica effector protein that we previously
44 vation of MAPK and AKT pathways, mediated by Salmonella enterica effectors secreted during infection,
45            Recent papers have shown that the Salmonella enterica FinO-domain protein ProQ binds a lar
46               In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar
47                            Insertions in the Salmonella enterica fra locus, which encodes the fructos
48   Detection of fluoroquinolone resistance in Salmonella enterica has become increasingly difficult du
49 enetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in res
50 , we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and o
51 infection with Burkholderia pseudomallei and Salmonella enterica HMBA treatment was also associated w
52 tructures of GusRs from Escherichia coli and Salmonella enterica in complexes with a glucuronide liga
53 luorescence in situ hybridization identified Salmonella enterica in the liver, subsequently confirmed
54 d in the EnvZ-OmpR two-component system from Salmonella enterica in vitro and in vivo, which directly
55 ps in the epidemiology of diseases caused by Salmonella enterica in West Africa.
56 aMN):DMB phosphoribosyltransferases (CobT in Salmonella enterica), in a reaction that is considered t
57  the foodborne pathogens E. coli O157:H7 and Salmonella enterica, in detail a nucleic acid lateral fl
58 and Salmonella Typhi infection, we show that Salmonella enterica induces malignant transformation in
59 ematical model to culture-confirmed cases of Salmonella enterica infections at Queen Elizabeth Centra
60 he most common manifestation of nontyphoidal Salmonella enterica infections, but little is known abou
61 ity and mortality for invasive non-typhoidal Salmonella enterica infections, we excluded cases attrib
62                                              Salmonella enterica is a leading cause of community-acqu
63                                    EutT from Salmonella enterica is a member of a class of enzymes te
64                                              Salmonella enterica is a ubiquitous Gram-negative intrac
65                                              Salmonella enterica is among the most burdensome of food
66                                              Salmonella enterica is one such pathogen, exploiting mul
67                                              Salmonella enterica is the leading etiologic agent of ba
68  their ability to detect low-level-resistant Salmonella enterica isolates that are not serotype Typhi
69 ccus pneumoniae, Mycobacterium tuberculosis, Salmonella enterica, Klebsiella pneumoniae, and Escheric
70 s are conserved in a distantly related SspH2 Salmonella enterica ligase.
71 ted microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium par
72                    Simultaneous detection of Salmonella enterica, Listeria monocytogenes and Escheric
73 re formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacteri
74                                  Serovars of Salmonella enterica, namely Typhi and Typhimurium, repor
75                                              Salmonella enterica natively possesses both the Pdu and
76 ersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and t
77                       Phase variation of the Salmonella enterica opvAB operon generates a bacterial l
78 uencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncodi
79 d Theiler's virus persistence, and decreased Salmonella enterica pathogenesis.
80  into nonphagocytic host cells is central to Salmonella enterica pathogenicity and dependent on multi
81                     We hypothesized that the Salmonella enterica phage SPN3US could be a useful model
82                                           In Salmonella enterica, PocR is a transcription factor that
83                                           In Salmonella enterica, PT modification is mediated by four
84                    It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that
85                                      Because Salmonella enterica ser. Typhimurium can overcome metal
86 sed investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S.
87 or comparing molecular subtyping methods for Salmonella enterica serotype Enteritidis and survey the
88 association between nalidixic acid-resistant Salmonella enterica serotype Enteritidis infections in t
89 Between March 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS
90 cal failure (ie, blood cultures positive for Salmonella enterica serotype Typhi, or Paratyphi A, B, o
91           Cattle are naturally infected with Salmonella enterica serotype Typhimurium and exhibit pat
92 mportant for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens.
93                                              Salmonella enterica serotype Typhimurium is a food-borne
94  detects typhoid-causing infectious bacteria Salmonella enterica serovar (Salmonella typhi) in 10 muL
95 nterica serovar Enteritidis, and 3% (3) were Salmonella enterica serovar Arizonae.
96 4 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy
97                                              Salmonella enterica serovar Enteritidis (S. Enteritidis)
98 aluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis DeltaguaBA Delta
99 used for the epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decad
100                                              Salmonella enterica serovar Enteritidis is a significant
101     We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b a
102  enterica serovar Typhimurium, 10% (10) were Salmonella enterica serovar Enteritidis, and 3% (3) were
103         An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis.
104 number of human cases of ceftiofur-resistant Salmonella enterica serovar Heidelberg in Quebec and Ont
105  from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo.
106 accine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella e
107 o develop the first human challenge model of Salmonella enterica serovar Paratyphi A infection.
108                                              Salmonella enterica serovar Paratyphi A is a human-speci
109                                              Salmonella enterica serovar Paratyphi A is a major cause
110 r with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever
111                                              Salmonella enterica serovar Senftenberg is a common nont
112 1 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine ef
113        In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the
114 ting protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection.
115                                              Salmonella enterica serovar Typhi (S Typhi) is responsib
116                                              Salmonella enterica serovar Typhi (S. Typhi) differs fro
117 Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies
118                            The population of Salmonella enterica serovar Typhi (S. Typhi), the causat
119 a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enteric
120 e used a protein microarray containing 2,724 Salmonella enterica serovar Typhi antigens (>63% of prot
121                                              Salmonella enterica serovar Typhi causes the systemic di
122                       Multiyear epidemics of Salmonella enterica serovar Typhi have been reported fro
123 ent in the Indian subcontinent, with chronic Salmonella enterica serovar Typhi infection reported as
124                                              Salmonella enterica serovar Typhi is a human-restricted
125                                              Salmonella enterica serovar Typhi is associated with a d
126                                              Salmonella enterica serovar Typhi is the etiological age
127        We report a typhoid fever case with a Salmonella enterica serovar Typhi isolate showing extend
128 lly and results from systemic infection with Salmonella enterica serovar Typhi or Paratyphi pathovars
129               Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a biv
130  Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective i
131 ded-spectrum-beta-lactamase (ESBL)-producing Salmonella enterica serovar Typhi was identified, whole-
132 p., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis),
133 n humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of p
134 e that the causative agent of typhoid fever, Salmonella enterica serovar Typhi, can partially subvert
135                     Enteric fever, caused by Salmonella enterica serovar Typhi, is an important publi
136                                              Salmonella enterica serovar Typhi, the causative agent o
137                                              Salmonella enterica serovar Typhi, the cause of typhoid,
138 the serotyped salmonellae, 14% (21/152) were Salmonella enterica serovar Typhi, whereas 86% (131/152)
139 childhood bacteremia, with a predominance of Salmonella enterica serovar Typhi.
140 osa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium.
141                                    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-lik
142 scherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negati
143 e of the Na(+)-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonst
144 ly showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium)
145 BA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium).
146                                              Salmonella enterica serovar Typhimurium (S.
147 wo intracellular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S.
148 w here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium)
149 d persisted in tissues of mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium)
150                                              Salmonella enterica serovar Typhimurium (S. Typhimurium)
151                                              Salmonella enterica serovar Typhimurium (S. typhimurium)
152 udies have shown that the enteric bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium)
153                                              Salmonella enterica serovar Typhimurium (ST) sense Toll-
154 have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST).
155 o control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter
156 ial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia
157                    Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model f
158  flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pse
159 opological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT.
160 on with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by thei
161 Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm
162                      The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from ac
163                                              Salmonella enterica serovar Typhimurium can inject effec
164                                  Conversely, Salmonella enterica serovar Typhimurium causes gastroent
165 lness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized
166    The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persisten
167                         We observed enhanced Salmonella enterica serovar Typhimurium colonization in
168 l compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that
169                        The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a
170                 We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is
171 toxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the v
172 dentified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in
173  provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastroint
174                   A recent study showed that Salmonella enterica serovar Typhimurium exhibits sliding
175                                              Salmonella enterica serovar Typhimurium exploits the hos
176 ite sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their abilit
177 ance of the Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium from macrophages
178 ur genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals
179 e human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc
180                  We found that intracellular Salmonella enterica serovar Typhimurium induced the binu
181 n simultaneously in pathogen and host during Salmonella enterica serovar Typhimurium infection and re
182                                              Salmonella enterica serovar Typhimurium infection of imm
183                   CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facil
184                                              Salmonella enterica serovar Typhimurium is a bacterial p
185                                              Salmonella enterica serovar Typhimurium is a common caus
186                                              Salmonella enterica serovar Typhimurium is a food-borne
187                                              Salmonella enterica serovar Typhimurium is a Gram-negati
188                                              Salmonella enterica serovar Typhimurium is an enteropath
189 h of the in vivo innate immune resistance of Salmonella enterica serovar Typhimurium is attributed to
190 very of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in
191 tedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by
192 ty testing and multilocus sequence typing on Salmonella enterica serovar Typhimurium isolates was per
193  the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS.
194                                The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 G
195 milar to purified PDU microcompartments from Salmonella enterica serovar Typhimurium LT2 that were im
196 alis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococ
197 ed a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its a
198 we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity is
199  were combined to identify most of the 3,838 Salmonella enterica serovar Typhimurium promoters in jus
200 ntroduction of the tviA gene in nontyphoidal Salmonella enterica serovar Typhimurium reduced flagelli
201 in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS
202                   The intracellular pathogen Salmonella enterica serovar Typhimurium requires the mgt
203                  We genetically engineered a Salmonella enterica serovar Typhimurium strain of multil
204  antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261.
205 sine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shar
206 egulatory system coordinates the response of Salmonella enterica serovar Typhimurium to diverse envir
207 he current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the ce
208  bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the cons
209  uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive
210       We define YvyG as an orthologue of the Salmonella enterica serovar Typhimurium type III secreti
211                                  Conversely, Salmonella enterica serovar Typhimurium uses a T3SS enco
212    Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium uses specialized
213                                              Salmonella enterica serovar Typhimurium utilizes molecul
214 , the interaction between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterize
215  instance, pigs experimentally infected with Salmonella enterica serovar Typhimurium was investigated
216                Listeria monocytogenes V7 and Salmonella enterica serovar Typhimurium were used as mod
217 cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs.
218 n of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of Pho
219                                  Salmonella (Salmonella enterica serovar Typhimurium) secrete numerou
220 Gram negative bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium).
221 Of the 102 typed NTS isolates, 40% (41) were Salmonella enterica serovar Typhimurium, 10% (10) were S
222                                              Salmonella enterica serovar Typhimurium, an intracellula
223       Nontyphoidal salmonellae, particularly Salmonella enterica serovar Typhimurium, are a major cau
224            For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formati
225 ic bacteria, either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced transl
226                                           In Salmonella enterica serovar Typhimurium, flagella-mediat
227 R, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth
228                                           In Salmonella enterica serovar Typhimurium, Mg(2+) limitati
229 nterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogat
230 cted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium
231 create FLIM-phasor maps of Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aer
232 h phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that
233                      Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of
234  To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine mode
235 hput assay for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered t
236  report that the Mg(2+) channel gene corA in Salmonella enterica serovar Typhimurium, which was previ
237  that TcpB protein can efficiently attenuate Salmonella enterica serovar Typhimurium-induced pyroptos
238 oQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium.
239 en Vibrio cholerae and the invasive pathogen Salmonella enterica serovar Typhimurium.
240 charide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium.
241  of physiological and virulence functions in Salmonella enterica serovar Typhimurium.
242 anced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium.
243 stinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium.
244 t intracellular states of the model pathogen Salmonella enterica serovar Typhimurium.
245 helial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium.
246                      Mice were infected with Salmonella enterica serovar typhimurium; cecum and small
247                                              Salmonella enterica serovars Enteritidis and Kentucky di
248        The burden of enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi is subs
249 ivalent to fever (39 degrees C-42 degrees C) Salmonella enterica serovars Typhi, Paratyphi A, and Sen
250  Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis
251 r jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven
252 estis), PscF (Pseudomonas aeruginosa), PrgI (Salmonella enterica SPI-1), SsaG (Salmonella enterica SP
253 sa), PrgI (Salmonella enterica SPI-1), SsaG (Salmonella enterica SPI-2), or MxiH (Shigella flexneri).
254 he 2.1 A resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN.
255 i, S. Paratyphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetize
256 hlortetracycline on the temporal dynamics of Salmonella enterica spp. enterica in feedlot cattle.
257  (EPEC), and Citrobacter rodentium Moreover, Salmonella enterica strains encode up to three NleB orth
258                      The NGS data set of the Salmonella enterica strains were used as a case study to
259 tic activity of various Escherichia coli and Salmonella enterica strains.
260 ith Escherichia coli, Neisseria gonorrhoeae, Salmonella enterica, Streptococcus pyogenes and Xenorhab
261  S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae The beta-lactamase T
262 aced this domain with a nuclease domain from Salmonella enterica subsp. arizonae This modified V. cho
263                          We report here that Salmonella enterica subsp. enterica serovar Typhimurium
264 , Bacillus cereus, Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium,
265 tudy, we compared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 agains
266 by >170%, driven primarily by an epidemic of Salmonella enterica subspecies enterica serovar Enteriti
267 nterica subspecies enterica serovar Typhi or Salmonella enterica subspecies enterica serovar Paratyph
268                        Human infections with Salmonella enterica subspecies enterica serovar Senftenb
269                                              Salmonella enterica subspecies enterica serovar Typhi or
270          We report a traveler who acquired a Salmonella enterica subspecies enterica serovar Typhi st
271                            Here we show that Salmonella enterica subspecies enterica serovar Typhimur
272 0 of 620 (74.2%) NTS isolates serotyped were Salmonella enterica subspecies enterica serovar Typhimur
273                                       Within Salmonella enterica subspecies enterica, a single lineag
274 serovar 9,12:l,v:- belongs to the B clade of Salmonella enterica subspecies enterica, and we show its
275 sis indicated that srgE is found only within Salmonella enterica subspecies.
276 high-abundance chemoreceptors of E. coli and Salmonella enterica suggests that it may be important fo
277                                           In Salmonella enterica, sulfur is trafficked to both thiami
278                    The common human pathogen Salmonella enterica takes up citrate as a nutrient via t
279 thogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillu
280 III secretion system (T3SS) of intracellular Salmonella enterica translocates effector proteins into
281       Within host cells such as macrophages, Salmonella enterica translocates virulence (effector) pr
282                        Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved
283  report the intrabacterial redox dynamics of Salmonella enterica Typhimurium (S. Typhimurium) residin
284 onlethal gastric infections of Gram-negative Salmonella enterica Typhimurium (ST), a major source of
285                            phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, ind
286                      An essential feature of Salmonella enterica Typhimurium pathogenesis is its abil
287 hat infection of macrophages and mice with a Salmonella enterica Typhimurium strain containing an ina
288                    By training with sRNAs in Salmonella enterica Typhimurium, we were able to success
289 in bacterial cells, particularly E. coli and Salmonella enterica Typhimurium.
290 leic acid, a major lipid in E. coli Last, in Salmonella enterica, ubiK was required for proliferation
291                      In the enteric pathogen Salmonella enterica, using chromatin immunoprecipitation
292  the beta- and gamma-proteobacteria, such as Salmonella enterica, Vibrio spp., and both Sphingomonas
293                          Dap accumulation in Salmonella enterica was previously shown to inhibit grow
294 es in an investigation of host adaptation in Salmonella enterica We highlight the value of the method
295 res of R-LPS from either Escherichia coli or Salmonella enterica were directly infused into the mass
296 lobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered.
297             Antibiotic-resistant isolates of Salmonella enterica were selected on plates containing l
298 eal disease agents, especially non-typhoidal Salmonella enterica, were also responsible for the major
299 bserved PPI, including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18
300 rimers specific for E. coli eaeA (151bp) and Salmonella enterica yfiR (375bp) genes.

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top