戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  modulate its function, we performed a yeast two-hybrid assay.
2 , and the interaction was confirmed by yeast two-hybrid assay.
3 h FASN and (ii) NS3 interacts with FASN in a two-hybrid assay.
4 e combinations for binary interaction in the two-hybrid assay.
5 that interact with this region using a yeast two-hybrid assay.
6 th V(1) and V(0) subunits were identified by two-hybrid assay.
7 AG1 and other proteins by means of the yeast two-hybrid assay.
8 d is shown to bind Prp43p and Spp382p in the two-hybrid assay.
9 th multiple division proteins in a bacterial two-hybrid assay.
10 o p33 in vitro or in a split-ubiquitin-based two-hybrid assay.
11 lence HMRa and to interact with Orc1BAH in a two-hybrid assay.
12 teracts with both MEI-9 and ERCC1 in a yeast two-hybrid assay.
13 teracting protein(s) in apple, using a yeast two-hybrid assay.
14 d VirB2 and VirB5 were detected in the yeast two-hybrid assay.
15 confirmed that CgtA interacts with SpoT in a two-hybrid assay.
16  of the beta-catenin C terminus in the yeast two-hybrid assay.
17  barley aleurone and physically in the yeast-two-hybrid assay.
18 oprecipitation from HEK293 lysates and yeast two-hybrid assay.
19 lity to interact with Rab4A by using a yeast two-hybrid assay.
20  of yeast vacuolar proteins and in the yeast two-hybrid assay.
21 tigated by coimmunoprecipitation and a yeast two-hybrid assay.
22 teroid receptor coactivator-1 in a mammalian two-hybrid assay.
23 sing pure proteins in solution and the yeast two-hybrid assay.
24 py studies and subsequently confirmed by the two-hybrid assay.
25 subunits including Sgf29 and Spt7 in a yeast two-hybrid assay.
26 racting proteins were screened using a yeast two-hybrid assay.
27 at prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay.
28 ith myocyte enhancer factor 2 in a mammalian two-hybrid assay.
29 sitive interaction with nucleolin in a yeast two-hybrid assay.
30  two polypeptides can be detected in a yeast two-hybrid assay.
31 proteins were identified by a modified yeast two-hybrid assay.
32 cursors was affected, as judged by the yeast two-hybrid assay.
33 ed for interaction with pre-22a in the yeast two-hybrid assay.
34 cally interact with WER and CPC in the yeast two-hybrid assay.
35 high-throughput, array-based, directed yeast two-hybrid assay.
36 ing proteins with GLP-1R by a membrane yeast two-hybrid assay.
37 was further confirmed by Co-IP and mammalian two-hybrid assay.
38 ck proteins, Hsp16.9 and Hsp17.5, in a yeast two-hybrid assay.
39 amK and the two proteins interact in a yeast two-hybrid assay.
40 -interacting proteins using a modified yeast two-hybrid assay.
41  with FeoB or FeoC was detected in the BACTH two-hybrid assay.
42 s DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay.
43 e ESCRT-III-related proteins CHMP1A in yeast two hybrid assays.
44 ters, subcellular localization and bacterial two hybrid assays.
45 length protein in vivo, as measured by yeast-two hybrid assays.
46 h other mitochondrial MORF proteins in yeast two hybrid assays.
47 sactivator yeast two-hybrid or reverse yeast two-hybrid assays.
48 s Alix in both immunoprecipitation and yeast-two-hybrid assays.
49 immunoprecipitation, pulldown, and mammalian two-hybrid assays.
50 ) with activity levels measured in bacterial two-hybrid assays.
51 teract with other flavonoid enzymes in yeast two-hybrid assays.
52 with this, AGL61 and AGL80 interact in yeast two-hybrid assays.
53 tween Mst7 and Pmk1 is not observed in yeast two-hybrid assays.
54 inity for LEDGF in either pull-down or yeast two-hybrid assays.
55 pitate from the testis and interact in yeast two-hybrid assays.
56 and Hst 5 were tested by pull-down and yeast two-hybrid assays.
57 ts with Ras1, Ras2, Cdc42, and Mgb1 in yeast two-hybrid assays.
58 rotein (GCP)6, as a keratin partner in yeast two-hybrid assays.
59  EBNA2 and EBNA-LP were found with mammalian two-hybrid assays.
60 e pull-down, yeast two-hybrid, and mammalian two-hybrid assays.
61 was shown to ablate the Rad54 interaction in two-hybrid assays.
62  bind the other's cognate effectors in yeast two-hybrid assays.
63 ssary for inter-domain interactions in yeast two-hybrid assays.
64 and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays.
65 the Rev nuclear export signal (NES) in yeast two-hybrid assays.
66 olishes this interaction, as determined with two-hybrid assays.
67 sing co-immunoprecipitation and in mammalian two-hybrid assays.
68 ned their impact on pRBR binding using yeast two-hybrid assays.
69 lutathione S-transferase pull-down and yeast two-hybrid assays.
70 cts with MBD2 and MBD3 in vitro and in yeast two-hybrid assays.
71 eciprocal coprecipitation experiments and by two-hybrid assays.
72 ammation by using pyrin as the bait in yeast two-hybrid assays.
73  and the meiotic Rhp51 homolog Dmc1 in yeast two-hybrid assays.
74 acts strongly with mosquito laminin in yeast-two-hybrid assays.
75 an interact with both TTI1 and TTI2 in yeast two-hybrid assays.
76 ptide aptamers for further analysis in yeast two-hybrid assays.
77  with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays.
78 g relatively little affected by ABA in yeast two-hybrid assays.
79 ies with coimmunoprecipitation and mammalian two-hybrid assays.
80 teracted with both Mst12 and Mata-1 in yeast two-hybrid assays.
81                                Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1
82 cted between PMK1 and MST7 or MST11 in yeast two-hybrid assays, a homolog of yeast STE50 in M. grisea
83  that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insec
84              PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the
85                              Using the yeast two-hybrid assay and a co-immunoprecipitation assay, we
86                                    Bacterial two-hybrid assay and accumulation of Gp0.6 only in MreB-
87                              Using the yeast two-hybrid assay and affinity chromatography, we demonst
88 high-throughput techniques such as the yeast two-hybrid assay and affinity purification, as well as f
89       Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro.
90 A1 physically interacts with HFR1 in a yeast two-hybrid assay and an in vitro co-immunoprecipitation
91 ts, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis.
92 he globular tail which was verified by yeast two-hybrid assay and by in vivo bimolecular fluorescence
93                              Employing yeast two-hybrid assay and coimmunoprecipitation followed by m
94 ally interacts with NLBD using the mammalian two-hybrid assay and coimmunoprecipitation studies in MN
95  anion exchanger 1 (kAE1), detected by yeast two-hybrid assay and confirmed by immunoprecipitation an
96                                  A mammalian two-hybrid assay and confocal microscopy were used to de
97                                     By yeast two-hybrid assay and ELISAs using purified proteins, UNC
98 ptic clustering domain, we performed a yeast two-hybrid assay and found that this stargazin domain bi
99                         We performed a yeast two-hybrid assay and identified hematopoietically expres
100 GE cytoplasmic domain as "bait" in the yeast two-hybrid assay and identified the formin homology (FH1
101  interact with Hsp90Ecin vivo in a bacterial two-hybrid assay and in vitro in a bio-layer interferome
102 e in ClpB interaction in vivo in a bacterial two-hybrid assay and in vitro in a fluorescence anisotro
103 ns also directly interact in vivo in a yeast two-hybrid assay and in vitro through ammonium sulfate c
104 s transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the
105 Ialpha was therefore used as bait in a yeast two-hybrid assay and microtubule affinity regulating kin
106             Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-
107               Despite the routine use of the two-hybrid assay and the potential of three-hybrid syste
108  Both proteins interacted with DDB1 in yeast two-hybrid assays and associated with DDB1 and CUL4 in v
109   ABD1 directly interacts with ABI5 in yeast two-hybrid assays and associates with ABI5 in vivo by co
110 Erm and TTF-1 were demonstrated by mammalian two-hybrid assays and by co-immunoprecipitation assays.
111  of the p12 subunit were determined by yeast two-hybrid assays and by pulldown assays.
112                                     By yeast-two-hybrid assays and chromatin immunoprecipitation we d
113                                        Yeast two-hybrid assays and co-fractionation studies using rec
114                                              Two-hybrid assays and coimmunoprecipitation analyses dem
115                                        Yeast two-hybrid assays and coimmunoprecipitation experiments
116  and TMC1 or TMC2 was observed in both yeast two-hybrid assays and coimmunoprecipitation experiments.
117 o the blue-light photoreceptor FKF1 in yeast two-hybrid assays and delays flowering in Arabidopsis wh
118                                        Yeast two-hybrid assays and fluorescence resonance energy tran
119                     Using both in vivo yeast two-hybrid assays and in vitro activity and binding assa
120  with beta-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins.
121 fects in vivo, ARC3 interacted with FtsZ2 in two-hybrid assays and inhibited FtsZ2 assembly in a hete
122                                    Mammalian two-hybrid assays and pull-down experiments demonstrated
123                                        Yeast two-hybrid assays and studies in HEK293 cells and primar
124  AcrB, in the absence of both AcrA and TolC, two-hybrid assays and suppressor mutations indicate that
125 reement with these observations, using yeast two-hybrid assays and TAP-tagged protein pull-down analy
126 (I)48 was initially examined using the yeast two-hybrid assay, and a TBP-binding domain was identifie
127 eric interactions were observed in the yeast two-hybrid assay, and Gpr4 was shown to physically inter
128 p, a subunit of mRNA decapping enzyme in the two-hybrid assay, and is enriched in cytoplasmic P bodie
129 h deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed pro
130 cessary for the interaction with FeoB in the two-hybrid assay, and when either of these amino acids w
131              Light-scattering studies, yeast two-hybrid assays, and analytical ultracentrifugation me
132 ified as Oas1b interaction partners in yeast two-hybrid assays, and both in vitro-transcribed/transla
133 tion of pull-downs, mass spectrometry, yeast two-hybrid assays, and chemical genomics, we demonstrate
134 le LIM protein) did not interact with WT1 in two-hybrid assays, and WTIP did not interact with an unr
135 based on yeast two-hybrid screens, mammalian two-hybrid assays, and/or coimmunoprecipitation assays.
136 h the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the pr
137 reliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the exis
138 ing yeast Smc5/6 complex employing the yeast two-hybrid assay as well as in vitro biochemical approac
139 ted using the GST pull-down assay, the yeast two-hybrid assay, as well as by coimmunoprecipitation.
140                          Surprisingly, yeast two-hybrid assays, bimolecular fluorescence complementat
141 ructure was corroborated using the bacterial two-hybrid assay, biochemical characterization of the pu
142 unoprecipitation in vitro and in vivo, yeast two-hybrid assay, bioluminescence resonance energy trans
143 PKC alpha weakly interacted with 4V by yeast two-hybrid assays, but PKC alpha constructs that lack th
144                           Based on bacterial two-hybrid assays, CelR homodimerizes but does not inter
145 TIP clone, which interacted with WTIP in the two-hybrid assay, co-localized with WT1 in nuclei, co-pr
146                       Furthermore, mammalian two-hybrid assays, coimmunoprecipitation analyses, and b
147                                          The two-hybrid assay confirmed these findings and revealed t
148 ions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic
149                                    We report two-hybrid assay data that support this model, and resul
150 irect association between Nab2 and Gfd1, and two-hybrid assays delineated Gfd1 binding to the N-termi
151 and both coimmunoprecipitation and mammalian two-hybrid assays demonstrate that TCDD induces interact
152                             Finally, a yeast two-hybrid assay demonstrated that SCP-2 directly intera
153                                      A yeast two-hybrid assay demonstrated that the last 22 amino aci
154             Functional analyses by the yeast two-hybrid assay demonstrated that the p.140 delN mutati
155                                        Yeast two-hybrid assays detect interactions between the basola
156                               In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chim
157  that would occur with the traditional yeast two-hybrid assay due to the transactivating properties o
158                                        Yeast two-hybrid assays established a direct interaction of Ce
159                                   Yeast GAL4 two-hybrid assays established that both proteins contain
160                                     In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and F
161                            Here, using yeast two-hybrid assays followed by biochemical binding experi
162 were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a gen
163       Results from immunoprecipitation and a two-hybrid assay further indicated that Fliih directly i
164                                    Mammalian two-hybrid assay further indicates that the amino acids
165 ating enzyme, interacts with NOPO in a yeast two-hybrid assay; furthermore, ben-derived embryos arres
166                                           In two-hybrid assays, Ggamma13 interacted specifically with
167 esin light chain is demonstrated via a yeast two-hybrid assay, glutathione S-transferase pull down, a
168 nteracts with PIKfyve as determined by yeast two-hybrid assays, glutathione S-transferase (GST) pull-
169                                    The yeast two-hybrid assay has proven to be a powerful method to d
170 tion of protein-protein interactions through two-hybrid assays has revolutionized our understanding o
171                           By using the yeast two-hybrid assay, here we identified HtrA2/Omi, a stress
172  genetic approaches exemplified by the yeast two-hybrid assay; however, neither assay works well for
173          Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites
174                                      A yeast two-hybrid assay identified a novel, WT1-interacting pro
175                                    The yeast two-hybrid assay identified that proteasome subunit alph
176 pull-down, co-immunoprecipitation, and yeast two-hybrid assays identified a specific interaction betw
177                                        Yeast two-hybrid assays identified ETTIN (ETT, or AUXIN RESPON
178                                        Yeast two-hybrid assays identified the S10 region of the K(+)
179 xococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait.
180                    By a combination of yeast-two hybrid assay, in vitro binding, and coimmunoprecipit
181    Using a combination of quantitative yeast two-hybrid assays, in planta co-localization studies, fl
182                                              Two-hybrid assays indicate that Ers1 also directly inter
183                                        Yeast two-hybrid assays indicate that these newly characterize
184                 In vitro pull-down and yeast two-hybrid assays indicate that these splice variants ha
185                                        Yeast two-hybrid assays indicate weak interactions between MDH
186                                        Yeast two-hybrid assay indicated that the PDH45 protein intera
187                                    Bacterial two-hybrid assays indicated strong interactions of M. tu
188                                    Mammalian two-hybrid assays indicated that Ddx20 can interact with
189        Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactiva
190                   Co-immunoprecipitation and two-hybrid assays indicated that RARgamma interacts with
191 cular fluorescence complementation and yeast-two-hybrid assays indicated that the IDR3 domain does no
192              Consistent with these findings, two-hybrid assays indicated that the Sir1 N terminus cou
193  with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator o
194 amily member periplakin, identified in yeast two-hybrid assays, interacted with a membrane-proximal d
195 on between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independ
196 s) in human cells, termed mammalian-membrane two-hybrid assay (MaMTH).
197                                     In yeast two-hybrid assays, MAS2 interacted with splicing and rib
198 r each Chlamydomonas FDX; (b) pairwise yeast two-hybrid assays measuring FDX interactions with protei
199                                Here, a yeast two-hybrid assay of LOX-PP-interacting proteins identifi
200 tinal insulin receptor (IRbeta) and used the two-hybrid assay of protein-protein interaction in the y
201                         According to a yeast two-hybrid assay, ORRM1 interacts selectively with penta
202                                     In yeast-two hybrid assays, ORRM3 interacts with RIP1, ORRM2 and
203                     The remarkable impact of two-hybrid assay platforms derives from their speed, sim
204 , a cDNA library was screened with the yeast two-hybrid assay, resulting in the identification of hea
205  from reporter transactivation and mammalian two-hybrid assays reveal that DEHP activates CAR2 at low
206                                      A yeast two-hybrid assay revealed a p204-cytoplasmic Ras protein
207                                      A yeast two-hybrid assay revealed an interaction between amino a
208 ted from a high-throughput screen of a yeast two-hybrid assay revealed interactions between sigma(54)
209 rminus of the alpha1-subunit using the yeast two-hybrid assay revealed that a distal C-terminal pepti
210                                        Yeast two-hybrid assay revealed that the N-terminal region of
211                                        Yeast two-hybrid assays revealed four-and-a-half LIM domain (F
212                                        Yeast two-hybrid assays revealed that GPC3 interacts with CD81
213 co-immunoprecipitation, pull-down, and yeast two-hybrid assays revealed that mXinalpha directly inter
214                                        Yeast two-hybrid assays revealed the formation of a ternary co
215          In yeast (Saccharomyces cerevisiae) two-hybrid assays, rice CBLs interact with the kinase pa
216 30 as an ARNT-interacting protein in a yeast two-hybrid assay screen.
217                                        Yeast two-hybrid assays show that FCL1 interacts with a subset
218                       Furthermore, our yeast two-hybrid assays show that MoVps17 and MoVps5 can inter
219        Furthermore, results of the mammalian two-hybrid assay showed that cyclin-dependent kinase 3 (
220                                        Yeast two-hybrid assays showed that an N-terminal region of GR
221         Co-immunoprecipitation and mammalian two-hybrid assays showed that retinoschisin and the N-te
222                             Additional yeast two-hybrid assays showed that the Gbeta(1) subunit also
223 immunoprecipitation, Far-Western assays, and two-hybrid assays showed that TIN2, but not POT1 or PIP1
224 tion between these two proteins in the yeast two-hybrid assay similarly failed to complement the grow
225                                 In mammalian two hybrid assays, Smad factors recruited the hybrid gen
226                                Using a yeast two-hybrid assay, SOS2 interacted with the N terminus of
227                                     In yeast two-hybrid assays, stronger interactions between DRaf's
228 DLF1 in the yeast (Saccharomyces cerevisiae) two-hybrid assay strongly supports that ZCN8 plays an or
229 -seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHL
230 n experiments in transfected cells and yeast two-hybrid assays suggest that the C terminus of DFz2 in
231                                        Yeast two-hybrid assays suggested an interaction of Psb27 with
232 ocardin and SRF as determined by a mammalian two-hybrid assay, suggesting that Ang II-induced increas
233 fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked
234 teracts with the other nucleoporins in yeast two-hybrid assays, suggesting that the proteins affect s
235 using a high-throughput version of the yeast two-hybrid assay that circumvents the difficulties in ex
236                        We also show by yeast two-hybrid assay that MEIS proteins can interact with an
237                                    Bacterial two-hybrid assays that detected interaction between the
238 lyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be
239                                   In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 in
240                                           In two-hybrid assays, the interaction of sigma(70) with eit
241                                    In direct two-hybrid assays, this portion of MAN1 bound to Smad2 a
242 n cross-linking protein filamin in the yeast two-hybrid assay through their highly conserved amino-te
243 otein fragment complement assay, and a yeast two-hybrid assay to analyze the protein-protein interact
244  of NUP98-HOXA9, we used a cytoplasmic yeast two-hybrid assay to avoid the nonspecific trans-activati
245                            We used the yeast two-hybrid assay to determine that XPF interacts with th
246           In this study, we used a bacterial two-hybrid assay to identify cellular proteins that inte
247 tions on epithelial cells, we used the yeast two-hybrid assay to identify proteins that interact with
248      In the current studies, we used a yeast two-hybrid assay to identify ten amino acids in Axin tha
249 tially screened for interaction in the yeast two-hybrid assay to identify the domains important for t
250                 Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmon
251                               In a mammalian two-hybrid assay to measure PR agonist-induced interacti
252                              We used a yeast two-hybrid assay to screen for interactors of the golgin
253 on with other proteins, we performed a yeast two-hybrid assay to search for novel interactors of AnxA
254          Initial difficulties in getting the two-hybrid assay to work with full-length Oas1b led to t
255 rt that CEA binds TRAIL-R2 (DR5) directly in two-hybrid assays to decrease anoikis through the extrin
256 ass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score
257 we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in
258         Here, we carry out directional yeast two-hybrid assays to identify the interactions between t
259                   Furthermore, we used yeast two-hybrid assays to show that DYT1 forms homodimers and
260                     Here, we utilized insect two-hybrid assays to show that FTZ-F1 interacts with two
261 th, to interact with sigma(70) region 4 in a two-hybrid assay, to bind to sigma(70) in a native prote
262 d a human prostate cDNA library by the yeast two-hybrid assay using full-length MDM2 protein as the b
263                                      A yeast two-hybrid assay using IIp45 as bait identified HDAC6 pr
264 reened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait.
265 n the N-terminus of XPF by the reverse yeast two-hybrid assay using randomly mutagenized XPF.
266                                       Binary two-hybrid assays using DNA encoding this isoform as bai
267       We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human
268                                Here, a yeast two-hybrid assay was performed to identify FGFR1-binding
269                                      A yeast two-hybrid assay was used to identify putative OAT3-asso
270                                    The yeast two-hybrid assay was used to test for interactions betwe
271  interactions with corepressors in mammalian two-hybrid assays was unexpected.
272                           By using the yeast two-hybrid assay we found that the ESCP tyrosine-based m
273 eptor-associated factor 2 (TRAF2) in a yeast two-hybrid assay, we demonstrate that Na interacts with
274    Using a modified version of the mammalian two-hybrid assay, we demonstrate that the interaction st
275                             Using an E. coli two-hybrid assay, we do not detect an interaction betwee
276                              Using the yeast two-hybrid assay, we found an interaction between CaM an
277                                Using a yeast two-hybrid assay, we found that Prox1 strongly and speci
278                    Using the above-mentioned two-hybrid assay, we found that zebrafish Tmc1 and Tmc2a
279                              Using the yeast two-hybrid assay, we have identified ribosomal S6 kinase
280                              Using the yeast two-hybrid assay, we have now identified the histone ace
281                                      Using a two-hybrid assay, we have shown that RocS1 interacts wit
282                                      Using a two-hybrid assay, we present evidence that FliX regulate
283                                Using a yeast two-hybrid assay, we previously identified proliferating
284                                  Using yeast two-hybrid assays, we determined the interactions among
285                                  Using yeast two-hybrid assays, we have identified a Rev7-binding sur
286                                     By yeast two-hybrid assays, we have now demonstrated that Myosin
287 combination of immunoprecipitation and yeast two-hybrid assays, we identified a series of protein-pro
288                                  Using yeast two-hybrid assays, we identified Spermidine Synthase2 (S
289                               By using yeast two-hybrid assays, we identified the carboxyl-terminal r
290 ons coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae
291                                        Yeast-two hybrid assays were used to identify two new and inde
292         All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding ass
293                                        Yeast two-hybrid assays were employed to identify important in
294                           Drosophila S2 cell two-hybrid assays were used to describe a novel homotypi
295                                        Yeast two-hybrid assays were used to identify rice proteins in
296 und state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the sig
297 moylation sites, and it interacts in a yeast two-hybrid assay with the UBC-9 and GEI-17 components of
298        All four proteins interacted in yeast two-hybrid assays with phragmoplastin, and showed differ
299 hb-21 and ESE1 are able to interact in yeast two-hybrid assays with the ABA responsive element bindin
300                                     In yeast two-hybrid assays ZYX-1 interacts with several known den

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top